

Androidが動作するようになったところで、次に、 このBeagleBone Blackとrowboatならではの処理を 行ってみます.

ここでは、BeagleBone Blackの拡張端子にある GPIO (General Purpose Input/Output) にLEDを接続 し、アプリケーションからLEDの点灯と消灯ができ るようにします (図1).

このようなGPIOの制御は、Androidのアプリケー ション開発キットであるAndroid SDKではサポート されていません. そこで、アプリケーションから、 Linuxカーネルのデバイス・ファイルを直接制御して 実現します.

図1 LEDを制御する Android アプリケーションの画面

表1 拡張端子 P9の配置(13番ピンまでの抜粋)

使用する GPIO

まず, BeagleBone BlackのGPIOについて確認しま しょう. GPIOは, 拡張端子P8, 拡張端子P9のどち らにも割り当てられています. ここでは, P9のGPIO を利用します. 拡張端子P9の詳細は, 表1のとおり です.

BeagleBone Blackの拡張端子はピンごとに役割は 固定化されておらず、複数の役割が割り当てられてい ます. これらの役割を切り替えるには、ソフトウェア でピンごとにモードを指定します.

ここでは、LEDを拡張端子P9の12番ピンのGPIO (GPIO1_28)を利用し、LEDを接続、制御します.

接続方法

今回は、拡張端子P9の12番ピン (GPIO1_28) を利 用します. なお、BeagleBone Blackの拡張端子のI/O 電圧は3.3Vとなっており、12番ピンからLED、抵抗 (100 Ω)を接続し、P2 (GND) に接続しています (図2, 写真1).

ピン	プロセッサ	夕 私	エードの	エード1	エードク	エードク	エード1	エード5	モードの	エードフ
番号	のピン番号	10 14	1.0		12 17 2	- L - P J	-C - 1 4	1.5	-L 1. 0	· · · · · · /
1, 2	GND									
3, 4	DC_33V									
5, 6	VDD_5V									
7, 8	SYS_5V									
9	PWR_BUT									
10	A10 SYS_RESET									
11	T17	UART4_RXD	gpmc_wait0	mii2_crs	gpmc_csn4	rmii2_crs_dv	mmc1_sdcd		uart4_rxd_mux2	gpio0[30]
12	U18	GPIO1_28	gpmc_ben1	mii2_col	gpmc_csn6	mmc2_dat3	gpmc_dir		mcasp0_aclkr_mux3	gpio1[28]
13	U17	UART4_TXD	gpmc_wpn	mii2_rxerr	gpmc_csn5	rmii2_rxerr	mmc2_sdcd		uart4_txd_mux2	gpio0[31]

NFSとtftpを使ったネットワーク・ブートで開発効率アップ!

Linux SDK クロス開発環境の構築

本章では, カーネルのビルドを含めた作業環境を構 築します. ここでは, テキサス・インスツルメンツの Linux SDK (ソフトウェア開発キット)を使用します.

テキサス・インスツルメンツのLinux SDKは, ARMのツールチェインを含んだ形でインストールで き, NFS (Network File System) やtftp (trivial file transfer protocol)の設定もセットアップ・スクリプトで実行 してくれるので簡単です.

Linux SDK のダウンロードと インストール

● テキサス・インスツルメンツのLinux SDKの 特徴

テキサス・インスツルメンツのLinux SDKは, テ キサス・インスツルメンツのウェブ・サイトからダウ ンロードできます.執筆時点での最新版は, ti-sdkam335x-evm-06.00.00.00で, Linuxカーネルのリビジョ ンは3.2.0となっています.

最新のカーネルとはいかないのですが、テキサス・ インスツルメンツのLinux SDKは、仕組みや環境が 割とシンプルで作業内容が把握しやすく、Beagle Bone Blackで使用しているSoC AM3358専用に作ら れているので動作がそれなりに安定しています。

そのため、PC Linuxを使用したクロス開発環境で ARM用Linuxのカーネルやアプリケーションを開発 する工程がどのようになっているか、といった学習に 向いています.

● ハードディスクの増設

では早速,前章で構築したPC Linux (Ubuntu)に ARM用のLinux環境を構築していくのですが,仮想 PC環境でLinuxを使用されている方は,新しいハー ドディスクを増設されることをお勧めします. もちろん,ここで言う新しいハードディスクとは仮 想上のハードディスクで,実際には仮想PCに接続す るディスク・イメージ・ファイルを新しく作ることを 指します.

仮想PC環境でしたら、物理的なディスク容量が許 す限り仮想ハードディスクを追加し放題です.ですの で、最初にPC Linuxをインストールした仮想ディス クとは別に、これから試していくARM用のいろいろ なLinux、Androidごとに個別に仮想ディスクを用意 すれば、UbuntuやAndroidと切り替えるたびにPC Linuxをインストールしなおす手間が省けます.

割り当てるディスクの容量の目安は、使い方にもよ るのですが、Linuxで10Gバイト、Androidで20Gバ イト以上は必要になります.

用意する仮想ディスクのイメージを仮想環境内で 使った分だけ増えていくタイプのものにして,余裕を 見て32Gバイトくらいを割り当てるのがよいと思いま す.

● ハードディスクのフォーマット

新しいハードディスクを追加したらPC Linux上で そのハードディスクを使用できるようにフォーマット する必要があります.

まずは、ハードディスクを追加してPC Linuxを起動します. Ubuntuでは、Disk Utilityを使用するとGUIでディスクのフォーマットが可能です.

まず初めに,新規ハードディスクのデバイス名を確 認します.Disk Utilityの左側の「Storage Devices」タ ブから***Hard Diskをクリックします(図1).一つ目 のハードディスクが/dev/sda,二つ目のハードディ スクが/dev/sdbのように順に割り当てられます.

/dev/sdaはUbuntuがインストールされているハー ドディスクなので、フォーマットしてしまうと

石井 孝幸

 第4章
 U-Bootのカスタマイズやドライバの作成に必須!

 第4章
 JTAGアダプタ+OpenOCDを 使ったデバッグ環境の構築

 塔田 祐幸/菅原 大幸

先代のBeagleBoneと比べてスペックが格段にアッ プし、価格も約半分の5,000円程度になったBeagle Bone Black. 出荷時には、Ångström Linuxがプレイ ンストールされており、ハードウェアを意識すること なくアプリケーションを作成することが可能で、デ バッガを利用しないで済んでしまうケースも多いと思 います.

しかし、周辺機能のハードウェアなどを拡張し、 U-Bootのカスタマイズやドライバなどの作成が必要 となった場合に、どうやってデバッグするの?デバッ ガは何を使えばいいの?どんなソフトウェアを用意し たらいいの?などと、お困りの方も多いと思います.

そこで本章では, BeagleBone BlackにJTAGアダ プタを接続してデバッグを行う方法と手順を紹介しま す. 今回は安価なJTAGアダプタとオープン・ソース のOpenOCDとEclipseを使用して, 実際にU-Bootの デバッグを行います.

JTAGの機能と BeagleBone Black

● JTAGによるオンチップ・デバッグ

JTAGは、元々デバイスや基板の検査を行うために 定められたバウンダリ・スキャン・テストの標準規格 (IEEE1149.1)ですが、近年はこのJTAGの機能を利 用し、オンチップ・デバッグを行う方法が一般的に なっています.

オンチップ・デバッグとは、CPUに内蔵されたデ バッグ機能を使って、プログラムのデバッグを行うた めの機能で、プログラムの実行や停止、メモリや CPUの内部レジスタの参照などを行うことができま す.

● JTAG端子がないBeagleBone Black

ところで、先代のBeagleBoneを使用していた方の なかで新たにBeagleBone Blackを購入し、「さぁ、デ バッグをしてみよう」と思ったとき、「ん?」と違和感 を覚えた方は少なからずいると思います。

それは, BeagleBone Blackには先代のBeagleBone にあったデバッグ用のUSBポートがなくなっている からです.

実は、先代のBeagleBoneでは、JTAG端子をUSB に変換するデバッグ用の回路が搭載されていて、USB ケーブルを接続するだけでデバッグが可能でしたが、 BeagleBone Blackではコストダウンのためか削除さ れてしまいました。

しかし, BeagleBone BlackにはCPUのJTAG端子 を引き出したコネクタが用意されているので,ここに JTAGアダプタを接続することでオンチップ・デバッ グを行うことができます.

デバッグに必要なハードウェアと ソフトウェア

● デバッグに必要なハードウェア

BeagleBone Blackをデバッグする上で必要なハー ドウェアは、前述したJTAG端子を利用するための 「JTAGデバッガ」です.

JTAGデバッガは世の中に数知れずあります.例え ば、テキサス・インスツルメンツの純正JTAGデバッ ガには「XDS100エミュレータ」,ARM社の純正 JTAGデバッガには「U-LINK」や「DSTREAM」など があります.それぞれ機能や価格はまちまちですが, 基本的にはJTAG端子を利用したJTAGデバッグが目 的です.

今回は、JTAGアダプタとして「HJ-LINK/USB」(ア ルファプロジェクト)を使用します.

芹井 滋喜

BeagleBone Blackは, Linuxを搭載した名刺サイズ のシングル・ボード・コンピュータです (**写真1**).

名刺サイズの小型基板ながらLinuxを搭載し,USB ホスト/デバイス,イーサネット,HDMI,microSD カード・スロット,拡張端子などを搭載しており,購 入してすぐに開発を始めることができます.

BeagleBone Black には豊富なサンプルがあり, SoC (Sitara AM3359)の内蔵周辺モジュールを使う際に は、これらのサンプルが役立ちます.また、拡張端子 からGPIOなどを使用することもできます.

本稿では, BeagleBone Blackの拡張端子を使った GPIO, A-Dコンバータ, PWM, I²Cの使い方を解説 します.

BeagleBone Black セットアップ

● PC に繋ぐとUSBマス・ストレージ・デバイ スとして認識される

BeagleBone Blackは,通常,USBでPCに接続して から使用します.

図1 BeagleBone Blackのマス・ストレージの内容

写真1 BeagleBone Blackの外観

BeagleBone BlackをUSBでPCに 接続 すると、 USBマス・ストレージ・デバイスとして認識されま す. 図1は、Windows PCにBeagleBone Blackを接続したときのフォルダの状態です.

BeagleBone BlackのUSBは複合デバイスとなって おり、PCからはいくつかのUSBデバイスが認識され ますが、マス・ストレージはWindows標準のドライ バが使用できます. 自動でドライバがロードされるた め、最初の接続からフォルダを開くことができます.

●マス・ストレージ以外のドライバのインストール

マス・ストレージ以外のドライバは、以下の手順で 別途ロードする必要があります.

BeagleBone Blackのフォルダには、START.htmという名前のHTMLファイルがあり、ウェブ・ブラウザで開くことができます.図2は、START.htmの画面です.

START.htmのStep #2の項目に, 図3のように, 対応OSの一覧が表示されています.

該当OSの「USB Drivers」セル内の文字列をクリッ

McASP+外付けコーデックを 使ったオーディオ入出力

AM3359内蔵マルチチャネル・オーディオ・インターフェース

袴田 祐幸/菅原 大幸

本章では、BeagleBone Blackにアナログ・オーディ オ入出力機能を追加する方法を紹介します. BeagleBone Blackのオーディオ出力はHDMI経由な ので、従来のアナログ入力タイプのヘッドホンやス ピーカを直接接続することができません.

オーディオ入出力を追加する方法として、USBス ピーカやUSBマイクを接続する方法もありますが、 今回はAM3359が内蔵しているオーディオ用のイン ターフェース「McASP」を使って回路を拡張し、アナ ログ・オーディオの入出力ができるようにします。

I2SやS/PDIFなどを サポートするMcASP

McASP (Multichannel Audio Serial Port)とは、テ キサス・インスツルメンツのCPUやDSPに搭載され ている汎用オーディオ・シリアル・ポートで、I2Sや S/PDIFのほか、複数の通信フォーマットをサポート しています.

McASPの信号は、基本的にクロック、データ、フ レーム同期信号で構成されます.表1に、AM3359の McASPの端子一覧を記載します.

McASP はあくまでディジタル・データの通信を行 うためのものなので、アナログ・データとの変換を行 うためにオーディオ・コーデックICに接続して使用 します.

ハードウェアの構成

今回は、BeagleBone Black拡張ボード「XG-BBEXT」(アルファプロジェクト)の構成を例に説明 します.

「XG-BBEXT」では、オーディオ・コーデックICに テキサス・インスツルメンツのTLV320AIC3106を使 用しています.オーディオ・コーデックの選定にあ たっては、McASPに対応していることと、Linux用 のドライバが公開されていることを基準としました. 公開されているドライバを利用することで、ソフト ウェアの開発負担を大きく軽減することができます.

図1に、AM3359とTLV320AIC3106の接続図を示 します. BeagleBone BlackとTLV320AIC3106は, McASPとI²Cで接続します.

● McASPの接続

今回は、McASPのマスタ・クロックにはCPUの内 部クロックを使用するので、マスタ・クロック入出力 端子 (McASP0_AHCLKX/AHCLKR)は未接続としま

	表1	McASP	端子·	一覧
--	----	-------	-----	----

140. 61.	-17 min	balle a chlorer hat
機能	説 明	本章での使用例
McASPy AXRI301	オーディオ・データ信号の送受信	McASP0_AXR2 出力に設定して使用
MEASIX_AAR(0.0]		McASP0_AXR0 入力に設定して使用
McASPx_ACLKX	送信ビット・クロック	McASP0_ACLKX 入力に設定して使用
McASPx_FSX	送信フレーム同期	McASP0_FSX 入力に設定して使用
McASPx_AHCLKX	送信マスタ・クロック	内部クロックを使用するため使用しない
McASPx_ACLKR	受信ビット・クロック	McASP0_ACLKX, McASP0_FSX と同期して動作する設定で使
McASPx_FSR	受信フレーム同期	用するため使用しない
McASPx_AHCLKR	受信マスタ・クロック	内部クロックを使用するため使用しない

50MHz, 16チャンネル, Android を使って波形表示 BeagleBone Black + FPGAボード で作るロジック・アナライザ

岩田 利王

Androidで動く ロジック・アナライザを作ろう!

「組み込み Android」と聞くと何やらとっつきにくい イメージがあるかもしれませんが, BeagleBone Blackの登場によりそのハードルが一気に下がりました.

今回はBeagleBone BlackとFPGA (Field Program mable Gate Array)を組み合わせることにより、直感的で分かりやすいGUI (Graphical User Interface)と、

写真1 何を作るか――こんなロジック・アナライザです

- これが今回製作する 「BBB ロジック・アナライザ」!
- BeagleBone BlackのUSBホスト・ポートは1個しかないのでハブ(3 ポート以上)を介してマウス,キーボード,FPGAボードに繋ぐ
- FPGAボードはBeagleBone BlackからUSB経由で給電される このようすは以下のサイトで見ることができる http://www.youtube.com/watch?v=xMH5YJ3hof8

高速な信号処理機能とを兼ね備えたシステムを実現し ます.

BeagleBone Blackと FPGAボードで作る理由と方法

ロジック・アナライザのような測定器を実現するに は、①信号をいかに高速に取り込むか、②GUIをい かに構築するか、が主なキーになります.

今回は①を実現するのにFPGAボード、②を実現 するのにBeagleBone Blackを使用します.本節では これら二つのボードを採用した理由、さらに双方のイ ンターフェースをとるのに効率的な方法は何かを説明 します.

写真2 BeagleBone Black上で走る Android アプリケーションで 波形描画

- これがロジック・アナライザ用 Android アプリケーション BBB APP !
- BeagleBone Black に搭載のmicroHDMI コネクタから HDMI ケーブル → DVI変換アダプタを介してディスプレイに繋ぐ
- アプリケーションの[波形キャプチャ]ボタンを押すたびにロジック・ アナライザの波形が更新される

このPDFは, CQ出版社発売の「LinuxガジェットBeagleBone BlackでI/O」の一部見本です.

内容・購入方法などにつきましては以下のホームページをご覧下さい. 内容 http://shop.cqpub.co.jp/hanbai/books/MIF/MIFZ201403.htm 購入方法 http://www.cqpub.co.jp/order.htm