

CQ出版社

写真1 子供から大人まで実験や電子工作に大人気の科学ガジェット・スパコン「ラズベリー・パイ」 いよいよLinuxのことなど知らなくてよい…というわけにはいかなくなってきた.世界出荷台数は1000万台に到達した

最強のI/Oコンピュータ・マシンを作るための第1 歩は Linux 攻略

雑誌でも取り上げられることが増えているラズベリ ー・パイ(Raspberry Pi, 写真1)は、電子工作用の I/Oコンピュータとして多くのエンジニアに利用され ています.

従来のマイコンだけでは荷が重かった,次のような 機能を簡単に実現できるのが大きな魅力です.

- ●インターネット接続
- Web ブラウザによるインターネット通信
- 静止画や動画の表示や処理
- 音声処理
- カメラ撮影

ラズベリー・パイを動かすにはまずLinuxを操縦す

る力が必要です. そこで第1部では, そもそもLinux とは一体何者なのかという話から, 基本的な使い方を 解説します.

Linux って何者?

1991年、一人のエンジニアが自宅で作り上げた業務用OSのホビー版

そもそもLinuxとは何なのでしょうか.

Linuxとは、パソコンでおなじみのWindowsと同 じOS(Operating System)のひとつで、

- コンピュータの画面の表示
- ネットワークとの接続

など、マイコンでは荷が重そうな高度な。処理なこな

USB ケーブルの準備からOSの日本語化まで、ガッチリ足場を固める

快適!Linuxコンピュータ 「ラズベリー・パイ」私の開発環境

(9) ACアダプタ (1) HDMIディスプレイ (5V, 2.5A) (4) HDMI ⑧USBケーブル -ブル (USB Aオス++ USBマイクロBオス) (2) | ANケーブル マイクロSD $\overline{(7)}$ カード(16G バイト以上. ③日本語キーボード クラス10)と (日本語109, USB) 標準SDカー ⑥ ラズベリー・パイ3 ド・アダプタ Model B (**5**) USBマウス

図1 [STEP1] Linux学習の第一歩は快適な実験環境作り(これ らの部材を用意する)

おなじみのWindowsパソコンやMacと違い,買っ てきたばかりのラズベリー・パイ3(写真1)はOSがイ ンストールされていないので動きません。本章では, 最新版のラズベリー・パイ3 Model Bをセットアップ して,Linuxを学ぶ(第1部 第3章~)準備をします.

STEP1 ハードウェアの準備

用意する素材一式を図1に示します.

マウスとキーボードは、4個あるUSBコネクタのど こに接続しても問題ありません、LANケーブルは有 線LANでルータやハブに接続するときに必要ですが、 Wi-Fiだけで使う場合は必要ありません、SDカード・ スロットにはスプリング機構がないので、取り出すと きにはカードの端をつまんで引っ張り出します。

STEP2 ラズベリー・パイにOSをインストー ルする準備(Windowsパソコンで下ごしらえ)

ラズベリー・パイを動かす前に、まずWindowsパ

写真1 Linuxを始めたいならラズベリー・パイ3がおすすめ(約 5,000円)

ソコン上で下ごしらえをします.

通常のインターネットにつながったWindowsパソ コンを使って、ラズベリー・パイ用のスペシャル Linux "Raspbian OS" をダウンロードしてSDカード にコピーします.SDカードはラズベリー・パイに合 うように専用のプログラムでフォーマットします.手 順を次に示します.

SDカードをフォーマットするプログラムをダウン ロードしてインストールする

普段使っている Windows パソコンを使って、次の Web サイトから SD カードをフォーマットするプログ ラム SDFormatter をダウンロードしてインストール します.

http://www.sdcard.org/jp/downloads/ formatter_4/eula_windows/

このWebサイトに進むと「エンドユーザ使用許諾 契約書」というWebページが開きます.ページー番 下の[同意します]ボタンをクリックすると、インス トーラのダウンロードが始まります.ファイルを適当 なフォルダに保存します.

後閑 哲也

Ο

÷ P

インド 小子× キー

Ð

図1 Linux OSのソフトウェア構成 ハードウェアの制御や複数の処理の GUI : 配分管理をするLinuxの中枢「カーネ ル」と、そのカーネルにアクセスす Graphical るための仲介プログラム(シェルやシ User Interface ステム・コール)などでできている

パソコンが進化した今も、Linux操作の基本はコ マンド文字入力

第1章で説明したように、さまざまなソフトウェア 群で構成されたOS"Linux"は、家庭用のパソコンで 使えるホビー用として生まれました。

Linux が開発された当時の家庭用パソコンは、今の ように高機能なグラフィック表示ができませんでした. そこで生みの親リーナス・トーバルズは、文字を使っ てコマンドを入力して操作する仕様にしました。した がって、パソコンが高性能化した今もこの操作法が基 本です.

Windowsは、最初からグラフィック画面による操 作が基本でしたが、当時のパソコンの処理性能は低く、 実用性がありませんでした. Windowsが普及した理 由は、パソコンのハードウェアの急速な進歩があった からでしょう.

LinuxもWindowsと同じようなデスクトップ画面 でグラフィックを扱えるようになってはいますが、今 でも文字によるコマンド入力操作が基本です. デスク トップだけでもたいていのことはできますが、まだま だ文字でコマンドを入力しなければ操作できないカー ネルの処理がたくさんあります.

中身がオープンで、コマンドでソフトウェアを直接 操作する感覚が得られるからこそ、Linux は世界中の エンジニアの間で自然と広まったのかもしれません.

Linux を構成するソフトウェア群

JL I

i

CUI:

Character

User Interface

シェル

仮想ファイル・

システム

ネットワーク・

スタック

Linux は図1に示すソフトウェア群で構成されてい ます、この図は、Linuxがどのようにして動くのかを 理解する助けになります.

Linux カーネル

ライブラリ群

プロセス・

メモリ管理

デバイス・

ドライバ群

Linuxカーネル

メモリやネットワーク、周辺デバイスなど、さまざ まなハードウェアを制御するソフトウェア群です。こ こがLinux OSの心臓部で「カーネル(kernel)」と呼 ばれています.

ディレクトリの移動やファイルの保存や読み出し. アプリケーションのインストールなど、多くのことを こなすソフトウェア群です. コマンド入力やGUIに よる操縦で、最終的に動くのはLinuxカーネルです。

シェルとターミナル

●のカーネルは、私たちユーザと直接対話する出入 り口をもっていません. Linux カーネルと私たちユー ザの間に入って通訳してくれるソフトウェア「シェル」 が、その出入口になっています。

Linux カーネルをすっぽり覆った貝殻の殻(shell)の ように見えることから、シェルと呼ばれています、シ ェルの開発にも多くのエンジニアが関わっておりた さんの種類があります。

ディレクトリとパスを使いこなして. ほしいプログラムにたどり着く ソフトウェアの国 Linux を自在に動き回る

後閑 哲也

./test.txt)

または

Test.txt

(a) ファイルの指定法その(1)…絶対パス

図1 Linux OSを構成するソフトウェア群は階層構造に整理されている 動かしたい処理プログラムを実行する前に、その場所を指定する必要がある.指定方法には (a)の絶対パス式と(b)の相対パス式がある

Linux OSは、ソフトウェアでできた一つの国の ようなものです.動かしたいソフトウェア(自作プ ログラムや実行ファイル)があるなら、そのソフト ウェアがある場所に行って「動け」と指示する必要 があります. ソフトウェアの国 Linux は、階層構造 になっており、住所を指定すれば希望の場所に移動 することができます.本章では、ソフトウェアの国 Linuxの中を自由自在に動き回る方法を紹介します. 〈編集部〉

ソフトウェアの実行は居場所を 指定してから

プログラムのありかにたどり着くための階層「デ ィレクトリ」と住所「パス」

前述のコマンドやインタプリタなど、Linuxを動か すプログラムは一体どこにあるのでしょうか?

Linuxは、住所を指定しないと動かしたソフトウェ

アを利用できません、住所は、県、市、町と同じよう にいくつかの階層で管理されています. この階層をデ ィレクトリ、住所(**県**市**町)をパスと呼び ます.

Linux カーネルは、コマンドもプログラムや実行フ ァイルの一つとして扱います. プログラムやファイル が存在する住所を指定しないまま実行を求めると、「そ んなプログラムやファイルはありません」と、Linux カーネルに怒られます.

ディレクトリはWindowsのフォルダ管理と似てい ますが、Cドライブ、Dドライブという表現はありま せん. どのディスクに書き込まれているかという物理 的な保存位置は無視されます. あくまでも論理的なデ ィレクトリ名だけで扱われます.ファイルの保存先は、 カーネルにゆだねられており、ハード・ディスクかも しれないしSDカードかもしれません.

なお、lsやcdなど、使用頻度の高いL

Linuxを動かせる…と言えるかも? 3つの基本技+a

①ディレクトリ制御 ②OSの起動・停止 ③インストール+シェル・スクリプト

Linuxカーネルを動かすシェル・コマンドは種類が 多く豊富です。

本章では、よく使うシェル・コマンドと、それらの コマンドを連続処理するシェル・スクリプトの作り方 を紹介しましょう.

Linux OSはコマンドで 動かすのが基本

ラズベリー・パイにインストールしたLinux OS Raspbianは、さまざまなアプリケーションを備えて います、動かし方は次のようにいろいろありますが、 基本は1のシェル・コマンド入力です.

① これが基本 / シェル・コマンドで動かす

かゆい所にも手が届く,一番よく利用する方法です. ターミナルを使ってコマンドを入力し、シェル経由で Linuxのコマンドを一つずつ対話しながら実行します.

カーネルがもつ機能だけでなく, Raspbianが備え るアプリケーションを起動したり、停止したりもでき ます. インターネットからアプリケーションをダウン ロードしてインストールして実行することもできます.

複数のコマンドを書き並べたテキスト・ファイルを 作って、Raspbianに読み込ませると、連続実行されます.

2 インタプリタ言語で動かす

Raspbianは、Python(パイソン)を始めとする多く のインタプリタ言語で動かすことができます.

GUI、つまりマウスで動かす

Windows と同じように、Raspbianは、アイコンで 起動できるアプリケーション(ターミナルやテキス ト・エディタなど)を備えています.マウスでメニュ ーを選択するだけです.

④ プログラムで動かす

 $Scratch(\lambda \rho \neg \gamma f)$ $\Leftrightarrow Node - Red(J - F \cdot V \gamma)$ ド)など、プログラムを作成する開発ツールはいろい

👸 🍈 🚰 🔜 💽 pi@raspberrypi: ~ () プログラミング 数育・教養
(ターミナル・アプリケーションを) 「ワンクリックで起動できるアイコン オフィス () インターネット 1 サウンドとビデオ ターミナル・アプリケ-グラフィックス ションを指定すると… ゲーム , 起動してメッセ-💮 システムツール ジ(プロンプトと言 う)が表示される ▶ アクセサリ = Calculator > LXTerminal アイパ(F) 編集(E) Help PDF Viewer **三**設定 SD Card Copier Run... Spectacle

Text Editor 図1 ラズベリー・パイのOS Raspbianを起動して、シェル・ コマンドを入力するアプリケーション「ターミナル」を起動

ろあります.

Thutdown.

アイコンをつなぐだけで、高機能なプログラムを作 ることができます。もちろんC言語や Java 言語も使 えます。

シェル・コマンドを動かす準備

コマンドを入力するアプリケーションを起動する まず、シェル・コマンドを入力するアプリケーショ ン・ソフトウェア「ターミナル」を起動します.

ラズベリー・パイを起動すると、図1に示すデスク トップが現れます. 上部にあるランチャにあるアイコ ンをマウスでクリックすると、ターミナルが起動しま す. Menuからも起動できます. [Menu] - [アクセ サリ] - [LXTerminal] と選ぶと起動できます. シ ェル・コマンドはこのターミナルから入力します. 実 行結果もターミナルに表示されます.

ターミナルに表示される文字の意味

ターミナルを起動すると現れるメッ

後閑 哲也

図1 ラズベリー・パイ専用Linux Raspbianが標準装備してい る無料アプリケーションのいろいろ(ほかにもたくさんある)

(c) ③インターネット

ラズベリー・パイに Raspbian をインストールする と、図1に示すさまざまなアプリケーションが自動的 に組み込まれます.本章では、その中からお勧めのア プリケーションを紹介します.

💵 テキスト・エディタ

おすすめ1 Leafpad

Raspbian が標準で備えている GUI ベースのエディ タ(図2)です. デスクトップから [Menu] - [アクセ サリ] - [Text Editor] で起動できます.

GUI対応なのでマウスで操作でき,動きも軽快です. メニューのオプションで,フォントの種類や大きさ, 行番号の付与を設定できます.日本語も入力できます.

あすすめ2 nano

CUI対応の単機能なテキスト・エディタです.メニ ユーにはありませんが、Raspbianに同梱されている

*(無題) オプション(0) ヘルプ(H) ファイル(F) 編集(E) 検索(S) 1 フォント(F)... 2 右端で折り返す(W) 3 ✓ 行番号を表示(L) Δ 自動インデント(A) 7 8 Leafpadの画面。 9 日本語の入力も可能です。 10

図2 スクリプト作成に!お勧めテキスト・エディタLeafpadの 起動画面(GUI対応)

ので,いつでもコマンドで起動できます.

ターミナルで nano を起動するためには、次のよう にコマンドを入力します.

sudo nano パス/ファイル名

後閑 哲也

Lest1 (プログラムの実行ボタン)1.py (2.7.9)
Eile Edit Formmat Bun Options Windows Help
import RPi.GPIO as GPIO from time import sleep
GPIO.setmode(GPIO.BCM) GPIO.setup(2, GPIO.OUT)
<pre>try: while True: GPIO.output(2, GPIO.HIGH) sleep(0.5) GPIO.output(2, GPIO.LOW) sleep(0.5)</pre>
except KeyboardInterrupt: pass

図1 ラズベリー・パイのプ ログラミング言語 Pythonの 開発環境 IDLEの起動画面

ラズベリー・パイのパイは、パイソンのパイです。 というくらい、 ラズベリー・パイはプログラミング言 語としてPythonを推奨しています.本章では, Python言語でラズベリー・パイを動かす方法を説明 します.

Python とは

1行入力&リターンで即実行!

Python はスクリプト系の言語で、「パイソン」と読 みます.

シェル・コマンドと同じように、コマンドを1行入 力すると即実行されて結果が返ってくるプログラミン グ言語の一つです.対話式でプログラムを動かすこと ができます.

Pythonは、もともとプログラミング言語ですから、 シェル・スクリプトのように一連の複数の命令を書い (b) ファイルを作成してから実行

たファイルを作って、一気に実行することもできます。 このファイルをモジュールと呼びます. 複数のモジュ ールをまとめたものをパッケージと呼びます.

現在, Python 2.xとPython 3.xの2つのバージョン が並行して使われています. 文法に一部異なる部分が あるため互換性はありません. ライブラリにはまだ 3.xに対応していないものがあります.

● 開発環境 IDLE (Integrated DeveLopment Environ ment)

Pythonには、IDLE(アイドル)という専用の開発環 境が用意されています. IDLEは、Python シェルとも 呼びます.

Raspbian $O \mathcal{F} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{B}$. [Menu] - [$\mathcal{T} \mathcal{D} \mathcal{A}$ ラミング]-[Python 2 (IDLE)] と選ぶと, IDLEが 起動します(図1). 私の日本語環境では、 IDLE上. 日本語を入力できませんでした.執筆

入出力からI²C通信まで簡単プログラミング!ターミナルでコマンド操縦も!

LEDをON&OFF / C言語×ラズパイ入門

後閑 哲也

リスト1 WiringPiをC言語で動かすその1 テキスト・エディ タでプログラムを記述する

💋 *test1.c			
ファイル(F) 編集(E) ;	検索(S)	オプション(0)	ヘルプ(H)
/* C言語プログラム例	*/		
#include <stdio.h< td=""><td> ></td><td></td><td></td></stdio.h<>	>		
/****** main *** int main(void){ printf("Hel printf("日才 }	*/ llo Wor from に語もOK	rld!\n"); Raspberry !!\n");	PI∖n");

本章では、組み込みシステム開発に最もよく利用さ れているC言語を使って、ラズベリー・パイのGPIO を制御します.専用ライブラリWiringPiを利用すると、 簡単で確実です.

C言語で動かすまでの3つの手順

● [手順1] テキスト・エディタでプログラムを記述 する

リスト1に示すように、ラズベリー・パイの標準テ キスト・エディタを使ってプログラムを作成し、適当 なディレクトリ(/home/pi/Test)に保存します.

テキスト・エディタで [ファイル] - [別名で保存] と選んで,ディレクトリを指定してファイル名(test1. cなど)を入力して保存します.

● [手順2] gccコンパイラでプログラムを実行形式 に変換する

通常,gccという標準的なコンパイラを使います. コンパイル前に作ったプログラムを保存したディレク トリに移動します.

ターミナル(LXTerminal)を開いてシェル・コマン ドを実行します.一応,Testディレクトリに作成し たファイルが存在することを確認しています.この後, リスト2のようにコマンドを入力してコンパイルを実 リスト2 WiringPiをC言語で動かすその2 プログラム・ファ イルをコンパイルして実行

💻 pi@GokanC: ~/Tes	t
ファイル(F) 編集(E)	タブ(T) ヘルプ(H)
pi@GokanC:~ \$ cd pi@GokanC:~/Test	Test- \$ ls ディレクトリを移動し ファイルを確認
test1.c pi@GokanC:~/Test pi@GokanC:~/Test test1_test1.c	\$ gcc test1.c -o test1 \$ ls・ ファイルを確認
pi@GokanC:~/Test Hello World! from Raspbern 日本語もOK!!- pi@GokanC:~/Test	\$./test1・ ry PI プログラムを実行! 実行結果

行します.コンパイル実行後に再度ディレクトリ内を 確認してオブジェクト・ファイルが生成されているこ とを確認しています.

● [手順3] プログラムを実行する

次にプログラムを実行します.

同じディレクトリに生成されたオブジェクト・ファ イルを起動します. **リスト2**の下側に示すように, "./testl"と入力するだけです. これで**リスト1**のCプ ログラムが実行されて, printf文に記述した内容が表 示されます.

C言語で書いたプログラムで,WiringPiという関数 ライブラリを呼び出し,ラズベリー・パイのGPIOを 制御します.WiringPi自体もC言語で記述されてい ます.

WiringPiの本家のWebサイト(http://

序音

Ο

図1 WebIOPi ライブラリを使えばラズベリー・パイのGPIOをネットワーク経由で動かせる

それではいよいよ,Windowsパソコン(リモート・ デスクトップ)のWebブラウザでラズベリー・パイの 入出力ピン(GPIO)を動かしてみます.

HTMLやPythonでI/Oするなら WebIOPi

ラズベリー・パイはマイコン・ライクなことがで きるI/Oコンピュータ

第1部 第7章 図2に示したように、ラズベリー・パ イは電気信号を出し入れできる40個の端子(GPIOピ ンという)をもつコネクタを備えています. ここが、 普通のパソコンやサーバと大きく違う特徴です. マイ コンとパソコンの両方のいいとこどりをしたI/Oコン ピュータ・ボードです.

このGPIOピンは、ディジタル信号を入出力できる だけでなく、"L"と"H"の2値のディジタル信号の パルス幅を調整することで、連続的に変化する電圧値 を得ることができるPWM(Pulse Width Modulation) 信号も出力されています.

ICやマイコンとデータ通信するための、定番イン ターフェース(UART, I²C, SPI)も備えています.

WebIOPiで何ができる?

ラズベリー・パイのGPIOを動かす方法には3つあ ります.

- (1) ラズベリー・パイのターミナルからコマンド を入力する
- (2) シェルやPythonなどのスクリプト言語や、C 言語などのプログラムを実行する
- (3) WebIOPiやWiringPiなどのアプリケーション を実行する

中でも,(3)のWebIOPiを使うと、図1に示すよう な流れで、ラズベリー・パイをI/OWebサーバのよう に動かすことができます.まさに、IoT機器を開発す るためのフレームワーク・ソフトウェアです.

使い方

ラズベリー・パイのGPIOは、HTMLからJavascript で書かれたWebIOPiの関数ライブラリを呼び出せば 操作できます.パソコンやスマホのWebブラウザ(リ モート・デスクトップ)から、ラズベリー・パイに用 意したHTMLファイルにアクセスして呼び出します. 表示されたボタンを押すと、WebIOPi経由でラズベ リー・パイのGPIOが信号を出力します.ラズベリー・ パイのGPIOに入力された信号レベル変 序章

0

ブレッドボードとテスタで今すぐ! 初めての回路製作と LED点灯

ラズベリー・パイは、USB、HDMI、イーサネットなどパソコン用のインターフェースのほかに、 GPIOやシリアル通信に使える40ピン拡張コネクタ を備えており、センサICやA-D/D-Aコンバータ などのハードウェアを拡張できます. これらはパソ コンの周辺機器とは異なり、ただつなげばよいとい うものではありません、初心者やソフトウェア出身 でハードウェアが苦手な人は、Webページで公開 されている回路図をコピー&ペーストして使用する 場合もあるようです. これではトラブルが発生して も、本質的な技術を理解していないので、解決方法 がわかりません.

第2部では、ラズベリー・パイ3モデルB+を用 いて、マイコンやコンピュータの周辺回路の扱いに ついて、IC内部の回路のメカニズムを交えて解説 します、LEDやリレー、モータ、LCD、センサ、 A-D/D-Aコンバータなどの電子部品を試作回路 で実際に動かし、確かめながら学習していきます。

本章では, 試作に必要な基礎知識と, 40ピン拡 張コネクタを出力ポートとして使う方法を説明しま す.

回路製作に使う道具一式

ラズベリー・パイ本体

第

音

写真1に示すラズベリー・パイ3 モデルBを使用します.

GPIO, I²C, SPI, PWMなど, ハードウェアの拡張 に使用する各種インターフェース信号は, ピンヘッダ を使用した40ピン拡張コネクタに取り出されていま す. これらのピンは, CPUを搭載するARMプロセッ サBCM2837(ブロードコム)に直接接続されています.

40ピン拡張コネクタに外部回路を接続することで、 さまざまな機能を拡張できます.

ケース…静電気やショートなどによる故障を防ぐ ハードウェアを用いた実験では、電子部品や工具を

庄野 和宏

序音

作

方法

チカ

LED

パワー

シリアル

W e b

| / 0

W

F

3

製作実例集

7

0

/0制御

の

写真1 準備するもの①…さまざまな電子部品をつないでハード ウェア拡張できる実験用I/Oコンピュータ ラズベリー・パイ3モ デルB

GPIO/I²C/SPI/PWMを備え, LED, モータ, センサIC, A-D/D-Aコ ンバータなどの電子部品が使用できる. USB, HDMI, イーサネットな どのインターフェースも備えており, パソコン周辺機器も接続できる

写真2 準備するもの②…静電気やショートなどによる故障を防 ぐ専用ケース

ラズベリー・パイ 拡張ボードケース 3B/2B/B+用 908-4218(RSコ ンポーネンツ). ハードウェアの実験では,電子部品や工具を扱う. あ れこれ実験をしているうちに,これらがラズベリー・パイの基板に触れ ると,故障の原因となる

使用します.実験中に誤ってラズベリー・パイの基板 に触れると、ショートなど、故障の原因になる可能性 があります.そこで写真2のようなケースを使用しま す.今回は、40ピン拡張コネクタを使用するので、 フラット・ケーブルが引き出せる形状のものを用意し ました. ISBN978-4-7898-4703-2

C3055 ¥3000E

CQ出版杠

定価:本体3,000円(税別)

レ ラズパイで入門! Linux I/Oプログラミング 教科書

