

部品モデル作成から信号源設定まで! アナログ・パフォーマンスを調べ尽くす

[Windows OS] ®電子回路シミュレータLTspice XVII ®電子回路シミュレータLTspice IV ®シミュレーション回路ファイル各種 ほか

ご購入はこちら. http://shop.cqpub.co.jp/hanbai/books/49/49541.htm

CQ出版社

第1章

SPICE シミュレータを使いこなして電子回路の性能を100%引き出す 本書のねらい

1. アナログ回路設計におけるシミュレータの活用 ~プロの設計現場での活用~

(1) シミュレーション設計の拡大とそのメリット

シミュレーション技術がまだ今のように発達していなかったころ,回路設計というのは 最初に机上の設計(手設計)を行い,それを実際に組んでみて動作や特性を確認するという 作業が主体で,シミュレーションはほとんど行わないか補助的に行う程度でした.それが シミュレーション技術の進歩ともにシミュレータを使った設計の比率が増えてきて,現在 ではシミュレーションによる回路設計はごく当たり前に行われています.特に半導体にお いては,シミュレーションでほとんどすべての設計を行っています.

ではなぜそのようにシミュレーションが主体となってきたのでしょうか. それには以下 のようなメリットがあるからです.

- ①簡単に回路動作の確認ができる
- ②回路変更,定数変更が簡単にできる
- ③ ばらつきや温度特性の確認が簡単にできる
- ④ 過電圧・過電流を与えても壊れない
- ⑤ 測定器がなくても簡単に特性がわかる
- ⑥ 測定困難箇所でも簡単に特性がわかる
- ⑦ 実験設備が不要
- (2) 回路設計現場におけるシミュレータ活用

実際にプロの回路設計現場ではどのようにシミュレーションが行われているのでしょうか.

第2章

LTspice を使うための準備をする LTspiceのインストールと基礎知識

1. LTspice XVIIのインストール

本書の執筆時(2017年8月)のLTspiceのバージョンはXVIIですが、これはリニアテクノ ロジー社のWebサイト(http://www.linear-tech.co.jp/)から最新版を入手す ることができます.また本書の付録CD-ROMにも収録しています.

Webサイトのトップページ(図2-1)にある[LTspiceソフトウェア]をクリックし,次 の画面LTspice(図2-2)の[LTspice(Windows7.8 and 10版)をダウンロード]をクリック すると、アカウントを登録するか、登録せずにそのままダウンロードするか選ぶダイアロ グボックスが現れます.登録するとリニアテクノロジー社の各種情報が送られてきますが、 登録しなくてもそのままダウンロードすることができます.

適当なフォルダにダウンロードしたファイルLTspiceXVII.exeを実行すると、セキュリ ティ警告の画面が現れますが、そのまま実行すると図2-3のライセンス認証画面になる ので、内容を確認して[Accept]をクリックして[Install Now]をクリックするとインスト ールが開始されます.

デフォルトのインストール場所は、Windows 10の場合、64 bit OSではC:¥Program Files¥LTC¥LtspiceXVII、32 bit OSではC:¥Program Files(x86)¥LTC¥ LTspiceXVIIですが、[Browse]をクリックして必要に応じてインストール先を変更す ることも可能です(本書では基本的に64 bit版での表示に統一しています).

インストールが完了すると、そのままLTspiceが立ち上がります.またスタートメニュ ーにLTspiceが登録されるとともにデスクトップにもアイコンが置かれるので、これらに よりLTspiceを立ち上げることができます.

第3章

回路部品を配置して結線を行う

回路図入力

シミュレーションを行う回路図を作成する

本章では、回路図を入力する操作法を説明します.部品の属性(値や型番)を指定する方 法は次章以降で説明します.

[1] 回路図を開く/保存する

<操作>

(1)新規の回路図を開く
(2)既存の回路図を開く
□ツールバー: □
□メニュー: [File]>[New Schematic]
□メニュー: [File]>[Open]
□ホットキー: [CTRL]+[N]
□ホットキー: [CTRL]+[O]
(3)上書き保存する
(4)名前を変えて保存する
□メニュー: [File]>[Save As]
□メニュー: [File]>[Save]
□右クリック: (XVII) [File]>[Save As]

<説明>

回路図を開いたり保存したりする方法は、一般的なWindowsアプリケーションと同じ ように、[File]メニューから行うか、ツールバーでそれに対応するアイコンをクリックし ます.回路図を保存する際、とくに何もしないとLTspiceの実行ファイルのあるフォルダ に保存されますが、数が多くなってくると見にくくなるので、回路図を保存するフォルダ を別に作成してそこに保存したほうがよいでしょう(アクセス拒否になってしまう場合は、 ユーザーフォルダの下に適当なフォルダを作成して、そこに保存する.OSのセキュリテ

RCL に値や属性を入れて、ICの型番を指定する 受動部品と半導体部品

リアルな受動部品に加え、バーチャルな抵抗も創り出す

本章では、抵抗、コンデンサ、インダクタなどの受動部品やダイオード、トランジスタ、 ICなどの半導体部品の属性(特性値や型番)を指定する方法を説明します.

[33] 抵抗/コンデンサ/インダクタの値を設定する

く操作>

□ RCLの値の上でカーソルがI になっているときに、右クリックする

→値を入力する

□RCLの上で右クリックする

→[Resistance]/[Capacitance]/[Inductance]に値を入力する

□RCLの上で、[CTRL]+右クリックする

→部品属性エディタの[Value]のValueに値を入れる

<説明>

上記の操作により,抵抗値/容量値/インダクタンス値を設定することができます.単位は,それぞれ[Ω]/[F]/[H]です.これらの値は、シンボルを配置した初期状態では「R」 「C」「L」となっているので、シミュレーションを行う前に値を入れる必要があります. <関連項目>

[5]部品の属性を編集する,[38]コンデンサの等価回路を設定する,[39]インダクタの 等価回路を設定する

本章では、シミュレーションに直結する電圧源や電流源の設定を中心に説明します. 複数の電圧源(電流源)を組み合わせて、1つの電圧源(電流源)では得られないような電圧波 形を得る方法についても説明します.

[50] 電圧源/電流源のDC電圧値/電流値を設定する

<操作>

(1) 電圧源/電流源の値の上で右クリック

→値を入力する

(2) 電圧源/電流源シンボルの上で、右クリック

→[DC value]に値を入力する

[備考] •このほかに,「[5]部品の属性を編集する」でも設定できる.

<説明>

(1)の操作では図5-1(a)のようなダイアログ・ボックスが現れるので、ここに電圧値または電流値を入力します. (2)の操作では図5-1(b)のようなダイアログ・ボックスが現れるので、ここの[DC value]に値を入力します(電流源のときの入力部分は[DC value]のみ). 「V」「A」の単位は省略できます.

<関連項目>

[51] 電圧源の内部抵抗を設定する, [52] 電圧源/電流源の属性を設定する

[●]初期状態の電圧源は「V」,電流源は「I」が入っている.

第6章 ^{電圧や電流の変化を波形表示させる} **波形ビュー**

シミュレーションの結末を波形で見る

本章では、スケールの変更、値の読み取り方、波形の追加や削除、テキストや図形の書 き込み方法などを紹介します.

[82] 電圧や電流の波形を表示する

<操作>

□[回路図上で観測したいノードにカーソルを移動]

→電圧の場合は、、電流の場合は、になったらそこでクリックする

□ツールバー:
〇 →表示させたい変数を選択する

 $\square \times = = = : [Plot Settings] > [Visible Traces]$

→表示させたい変数を選択する

□右クリック: (N) [Visible Traces]

: (XVI) > [Visible Traces]

<説明>

シミュレーションを実行した後に、電圧や電流波形を表示させることができます.(2)と (3)の方法では、表示可能な電圧/電流が表示されます.ここで、表示させたい電圧/電流 を選択します.[CTRL]を押しながら選択すると複数選択でき、[SHIFT]を押しながら選 択するとその範囲の電圧/電流を選択可能です.

(1)の操作は回路図ペインがアクティブになっていないと グや のアイコンは表示されません.また,(3)は波形ビュー・ペインがアクティブになっていないとメニューに[Plot Settings]は表示されません.ペインをアクティブにするには,それぞれのペインのどこ

LTspice 標準モデルにない部品を使う モデルとサブサーキット

LT社以外のモデルの導入と、シンボルを作る

本章では、半導体の特性を記述しているモデルの使い方と変更方法、複数の回路部品を 1つの部品のように扱うサブサーキットの作り方と編集方法について説明します。

[110] 登録されていないディスクリート半導体を使う

<説明>

LTspiceに登録されていないディスクリート半導体は、そのモデルを用意する必要があ ります. それには以下の3通りあり、それぞれ一長一短あります. 具体的な方法は、次の 項以降で説明します.

(1) 回路図上にモデルを直接記述する.

→ [[111]回路図上にモデルを直接記述する」参照

[長所]簡単でわかりやすい.回路図を見てすぐにわかる.

[短所]回路図ごとに毎回モデルを記述する必要がある.

(2) モデルを記述したファイルを作って, .LIB でそのファイルを読み込む.

→「[112]モデルを登録してシミュレーションできるようにする」参照 [長所]モデルの記述は一度ファイルに記述するだけでよい.

追加したモデルが別ファイルになっているので、もともと登録されているモデル と区別しやすい。

[短所]回路図ごとに毎回SPICE Directive で読み込み指定する必要がある.

LTspiceの部品リストに表示されない.

(3) LT spice に登録されているモデルを記述しているファイルに新たに追加する.

第8章

画面やシミュレーション環境の設定を行う

各種設定

自分に合った使い勝手の良いLTspice を実現する

本章では、文字フォント、ホットキーの各種設定方法を説明します.

[138] ツールバー / ステータス・バー / タブの表示 / 非表示を切り替える

<操作>

□メニュー:[View] →ツールバー:[Toolbar]にチェックを入れると表示 ステータス・バー:[Status Bar]にチェックを入れると表示 タブ:[Window Tabs]にチェックを入れると表示

<説明>

メニューの[View]をクリックして, [Toolbar][Status Bar][Window Tabs]のそれぞれ にチェックを入れると, ツールバー, ステータス・バー, タブが表示されます. 初期状態 ではいずれもチェックが入っていて, すべて表示される状態になっています. チェックが 入っていない状態では, チェック・ボックスそのものが表示されていません(図8-1).

[139] ウィンドウ内の各画面(ペイン)の配置を変更する

<操作>

(1)横に並べる

 $\Box \neq = = - : [Window] > [Tile Vertically]$

 $\square \times = = = : [Window] > [Tile Horizontally]$

シミュレーションを行うための各種設定を行う **シミュレーションの準備と基本操作**

どのようなシミュレーションを行うかを設定する

回路図が完成したら、次にシミュレーションを行うための準備が必要です. LTspiceは, 直流動作点解析,波形解析,周波数特性解析など,さまざまな計算機能を備えています. 本章では,解析方法の選び方や計算条件の設定方法と,さらにシミュレーションに関する 基本操作を紹介します.

[146] 解析モードの選択と計算条件設定のための2つの入り口

<説明>

シミュレーションを行うには、どのような解析を行うか. どのような条件で行うかを設 定する必要があります. その設定は、次の2つのいずれかの方法で行います.

(1)シミュレーション設定パネル

(2) SPICE Directive 入力ボックス

Column(9-A)

設定しなくても走るDC動作点解析(.OP)

周波数特性を計算するAC小信号解析(.AC)や波形を計算するトランジェント解析(.TRAN) など、ほとんどの解析はコマンドで指定しなければ実行されることはありません.

しかし,AC小信号解析もトランジェント解析も,直流動作点が求まっていないと計 算を実行できません.DC動作点解析(.OP)は、トランジェント解析でオプション設定 した場合を除き,特に指定をしなくても自動的に実行されます.

第10章

デジタルテスター / カーブトレーサのように直流電圧電流を求める

入力電圧や電源変化による電圧電流変化,半導体素子の直流電流を明らかにする

本章では、DC動作点解析(.OP)とDCスイープ解析(.DC)の2つのシミュレーション機 能を使って、アナログ回路や半導体素子の直流特性を求める方法を紹介します.温度や電 圧、電流をパラメータにした静特性の変化を調べる方法も紹介します.

[177] 接続点の直流電圧や部品に流れる直流電流を求める

<操作>

DC動作点解析を行う…[150]

<説明>

図10-1に示す差動増幅回路を例にシミュレーションを行ってみましょう.

この回路は、Q1(またはQ2のベース)に信号を加えると、Q1とQ2のコレクタに差動信 号が出力されます.この回路の各ノード電圧と各部品に流れる電流を求めるにはDC動作 点解析を行います.

くシミュレーション結果>

シミュレーションを実行すると(Vinは0V),図10-2のようなウィンドウが表示されま す.ここには、全ノード電圧と全線路電流が表示されています.これを見るとトランジス タの動作電流は、Ic(Q1) = Ic(Q2) = 0.500119 mA, out1, out2の電位は4.99881 V ということがわかります.この結果が表示されたウィンドウを閉じても、 をクリック すると再度表示されます.

オシロスコープのように波形を求める

電源投入直後や保護回路のふるまい、発振回路の起動特性を明らかにする

本章では、オシロスコープで観測できる波形を表示するトランジェント解析(.TRAN) を使う方法と、信号を構成する周波数成分を計算して表示するFFT解析(.FOUR)の使い 方を紹介します。

[196] 初期値を設定する(.IC)

<操作>

- (1) DC動作点解析の結果を用いる
 →初期値を与えずそのままシミュレーションする
- (2) すべての電圧源を0に設定して、シミュレーション開始直後に定常状態に立ち上げる
 →.TRANに[startup]オプションを用いる…[155][156]
- (3) 各電圧源に個別に初期値を与える
 - →① [UIC]オプションを用いる …[155][156]

②.IC V(<ノード1>)=<値1>[V(<ノード2>)=<値2>…]

<説明>

トランジェント解析では、初期値の与え方によって結果が違ってきます.

初期値の与え方は、上記の<操作>に示す3つの方法があります。(1)は、DC動作点解 析の結果をそのまま初期値に適用する方法です。オプションは何も付けずにそのままシミ ュレーションします。

(2)は、電圧源をすべて0とし、 $t = 20 \mu s$ で定常値まで立ち上げる方法で、[startup]オ プションを用います. これは「[155]トランジェント解析を行う①」の方法でシミュレー

前章では,時間をX軸にして電子回路の過渡応答時の振る舞いを調べるトランジェント 解析を紹介しました.本章では,周波数をX軸にして利得,位相,雑音,*CMRR*,出力イ ンピーダンスをはじめとする交流特性を調べるAC小信号解析を紹介します.

[213] 利得位相周波数特性を求める

<操作>

大きさが1のAC電圧源を入力信号とし、AC小信号解析を行う…[52][158][159]
 出力電圧 V (out)のグラフを表示する… [82]

<説明>

図12-1の回路図に示すようなOPアンプ増幅回路の利得と位相の周波数特性を求めて みましょう.利得*G_v*は,

 $G_V = 1 + \text{Rf/Rs} = 1 + 100 \text{ k/1 k} = 101[倍] (40.1 \text{ dB})$ と計算されます。

入力信号Vinは、大きさ(AC Amplitude)が1のAC電圧源にします。1以外にすると、 シミュレーション結果で利得を直読できなくなります。回路図中の、

.ac dec 20 1 10MEG

は、ディケード(10倍)あたり20ポイントずつ、1 Hz ~ 10 MHz まで AC 小信号解析を行 うという意味です。

<シミュレーション結果>

シミュレーション結果を見ると平坦部の入出力利得は40.1 dBで, 計算通りになってい

第13章

LTspice XVII で追加された機能を見る LTspice XVIIの新機能

新機能を使いこなす

第12章まではLtspice IV/ XVII 共通の機能でしたが、本章では新しくなったLTspice XVII で新しく追加された機能について紹介します.

LTspice XVII は64bit 化され(32bit もあり)高速化されたことと、UNICODE化されて多 言語が扱えるようになったのが一番大きな変化ですが、その他にもいくつか追加された機 能があります。

また新規機能というわけではありませんが、モデルやシンボルのファイルがこれまでは LTspiceの実行ファイルの置かれたフォルダにありましたが、LTspice XVII ではWindows のユーザー領域(ドキュメント)にLTspice XVII というフォルダが作られて、そこに置かれ るようになりました.これによってWindowsのセキュリティによる制限がなくなり、使 い勝手が向上しています.

さらにモデルについても、従来はLT社製ICしか用意されていませんでしたが、最新の LTspice XVIIではアナログ・デバイセズ社製ICも用意されました.より多くの製品が使え るようになり、利便性が向上しています.

[227] 日本語のラベルを付ける

<操作>

「[11] ラベルを付ける」参照

<説明>

Ltspice IVではラベルに日本語は使えませんでしたが、LTspice XVIIでは日本語が使え るようになりました. 使い方は英数字の場合とまったく同じで、当然シミュレーションも

