

32ビット・マイコン開発

多機能マイコンであれこれやりたくなったら, リアルタイムOSがオススメ!

付属DVD-ROM内容

開発環境のインストールが不要! Windows上で動くエミュレータでソフトウェア開発できる

- ARMマイコン用に構築したソフトウェア開発環境
- 仮想マシンを起動するソフトウェア「VMwarePlayer」
- RTOS [TOPPERS/ASP]および [TOPPERS/JSP]のソース付き

CQ出版杠

仕事をサッと整理して, CPU 社長をバリバリ働かす

OS は優秀な秘書!

CPU 社長は仕事がいっぱいで悩んでいた

ロローグ

ハード株式会社の CPU 社長は,抱えている仕 事の多さに頭を悩ませていました.社内会議に メールの返信,見積り書の作成,原稿の執筆, 出張の準備など仕事がたくさんあり,順序よく やればこなせる量ですが,数が多すぎて困って います.

杉本明加

時には, やらなくてはならない仕事をすっか り忘れてしまい, そのたびに大慌てです.

仕事を整理してくれる秘書 (OS) を採用した

るときにこなす仕事に分けていきました.

CPU 社長は仕事の段取りを秘書に手伝っても らうことにしました. 秘書は, こう言いました. 「仕事の重要度や緊急度をきちんと整理しましょ う. その管理は私がします. 社長は一つずつ順 番に仕事をこなしてください」.

そして, 社長の机にあった書類や貼ってある 付箋をテキパキと整理していったのです.

期限が迫っているものや社外向けの仕事と いった優先度が高いもの,そういった仕事がな いときにこなす仕事,時間が空いていたり,重 要な仕事がほかの人の都合で止まっていたりす

すると社長は、持っている能力を最大限に発揮して、仕事を全てこなすことができたのです.

この場合,社長(CPU)の仕事がタスクに相当します.タスクが多すぎると,今やるべき仕事は何なのか,いつまでに終わらせる必要があるのかといった管理が大変です.OSは,その管理を引き受けることで CPU がタスクを実行すればよいだけにします.

割り込みで入る仕事は秘書が受け付けをする

秘書は、かかってきた電話や来客を受け付けます。そして、電話を受けて社長に取り次ぎ、社長は仕 事を中断して電話の応対をします。しかし、急ぎの仕事をしているときは社長に知らせず、今こなして いる仕事を終わらせることを優先させます。

OSは、特別なタスクである割り込み処理の管理も行ってくれます。タスクを動かしているときに CPUの外から割り込みが通知された場合、タスクを中断して割り込み処理を先に行う必要があります。 OSが割り込み処理へ移行する部分を担ってくれるため、アプリケーションは処理の本体を作成するだ けでよくなります。

* * *

OS が提供しているマルチタスクという機能は、プログラム全体をタスク(仕事のかたまり)に分割して、複数のタスクを並列に実行させることができる機能です。分割したタスクに優先順位を付けることにより、優先度の高い処理から順に実行させることができます。

本書では組み込みシステムの開発で使われることの多い, OS の持つ機能に時間内に処理を完了させる機能(リアルタイム性)をプラスした「リアルタイム OS」を取り上げます. このリアルタイム OS は, 多機能な 32 ビット・マイコンで広く使われています.

32 ビット・マイコンである ARM マイコンをターゲットとして、リアルタイム OS を使ったプログラ ミング方法と、リアルタイム OS を使うための準備 (移植) について解説します.

すぎもと・めいか 組み込みプログラマ

32 ビット・マイコン開発で使われる

リアルタイム OSの 機能を理解しよう

石田利永子

単純な処理を行う装置を開発する場合は,OS を用いずにソフトウェアを開発した方が簡単で確 実に処理ができることがあります.しかし,モー タ制御をしながらユーザ・インターフェースの処 理やネットワーク通信を行いたいとなると,複数 の処理を同時に行う必要があるので,それらの処 理を管理するシステムを開発するのは大変です. このようなシステムの開発には,リアルタイム

第

音

OS (以下, RTOS) を使うと非常に効果がありま す.

RTOSには、リアルタイム性が必要な複数の処 理を制御する機能が備わっています.また、ハー ドウェアの違いを OS が吸収してくれる^{注1}ので、 ソフトウェア技術者はアルゴリズムの開発のみに 集中できるというメリットがあります.

RTOS が持つ特徴を本章では説明します.

1.1 決められた時間内に仕事を終わらせるしくみ

初めに, RTOS の最大の特徴といえる, 時間的 制約をクリアするしくみについて説明します.

● 優先順位を付けてタスクを実行するしくみ →→ スケジューリング・アルゴリズム

RTOS は,スケジューリング [次に処理するタ スク (処理単位)を決める] 機能を持っています. それぞれのタスク処理が時間的制約を満たせるか どうかは,このスケジューリングのアルゴリズム で決まります.

Windows や Linux などの汎用 OS の場合, す べてのタスクが平等に実行できるようにスケ ジューリングされています. しかし, 組み込みシ ステムの場合は, 各タスクはすべて決められた時 間内に処理を終えなくてはならず,そのために早 く処理をしなければならないタスクから優先順位 を決めて実行するしくみが必要になります.

ほとんどの RTOS では、最も優先度の高いタ スクから順に実行するアルゴリズムが採用されて います、そして、優先度の高いタスクの処理が終 わるまで、優先度の低いタスクは実行されません、 また、優先度の高いタスクが実行されると、優先 度の低いタスクは中断されます(図1.1).この切 り替えのことをプリエンプト(preempt)といい ます、さらに、急いでいるタスクが無意味に優先 度の低いタスクに待たされないようなしくみ(優 先度継承、優先度上限プロトコルなど)を備えて いる OS もあります.

注1: 隠蔽するともいう.システムのリソース (資源) は OS が管理することになるので、アプリケーション・プログラムからは、OS に対して決められたコマンドを与えるだけでリソースを利用できるようになる.

VMware Player を使用して, ソフトウェア開発環境を動かす

付属 DVD-ROM を使用して 開発環境を構築する

 \bigcirc

筞

峕

使用するプログラム 01_VMware Player, 02_VMware HDD

本書付属の DVD-ROM に収録されているデータを使用して、ソフトウェア開発環境を構築する方法を 説明します.

組み込み開発では、Windowsパソコン上で動くプログラムを開発するのと異なり、開発するター ゲット機器に応じた開発環境を構築する必要があります. ここでは ARM マイコン (LPC2388) が実装さ れている基板をターゲットとして構築したソフトウェア開発環境を起動します.

2.1 VMware Player のインストール方法

ソフトウェア開発環境を起動するには、VMware Player がインストールされているパソコンが必要で す. インストール方法を次に説明します.

図 2.1 付属 DVD-ROM の 01_VMwarePlayer フォルダ

リアルタイム OS を使って, LED を点滅させる

プログラムをビルドする方法

 \odot

第

音

使用するプログラム 03 ARM 用 TOPPERSASP, 04 SampleProgram(asp)

杉本明加

本章では、TOPPERS/ASPの概要と、RTOS のプログラミングに必要な開発環境について解説 します. 数ある RTOS の中から、無償で使用で きる「TOPPERS/ASP (Advanced Standard Profile)」という OS を取り上げ、具体的に製品 に組み込むまでの手順を説明します.

TOPPERS とは、Toyohashi OPen Platform for Embedded Real-time System の略で、組み込 みリアルタイム・システム向けのソフトウェア・ プラットホームを開発するという意味です.

3.1 今回使用する RTOS 「TOPPERS/ASP」とは

● 組み込み向けリアルタイム OS の仕様 …µITRON

μITRON 4.0 仕様は, TRON (The Real-time Operating system Nucleus) 協会が策定した組み 込み向け RTOS の仕様です. 日本国内で使われて いる RTOS の中でも高いシェアを占めています. 利用されている分野は多種多様で, FA (Factory Automation) 機器や AV (Audio Visual) 機器をは じめ, 通信機器や運輸機器など, あらゆる組み込 みシステムに採用されています.

TOPPERS/ASP は、 μ ITRON (Micro Industrial TRON)の仕様に独自の拡張を行った OS です.したがって、厳密に μ ITRON 4.0 仕様に準拠しているとはいえませんが、互換性は高くなっています.

● TOPPERS プロジェクトが開発した

TOPPERS/ASP は, TOPPERS プロジェクト⁽²⁾ で開発された RTOS の一つです. TOPPERS プロ ジェクトは,豊橋技術科学大学(当時)の高田研究 室が中心となって活動を始め、企業や大学の研究 室、各地の工業試験場と連携しながら発展してき ました.法人以外にも個人でプロジェクトに参加 し、開発成果をリリースしているユーザもいます. 代表的な成果物は RTOS です. 日本で使用さ

れる頻度の高い組み込みシステム向け OS である µITRON 4.0 仕様の RTOS と, 自動車システム 向けの OS である OSEK/VDX 仕様の OS を公開 しています.また,それ以外にも TCP/IP のプロ トコル・スタックやファイル・システムも公開し ています.その主な成果物を**表 3.1** と図 **3.1** に示 します.

開発したソフトウェアはオープン・ソースとし て公開されており,実際の製品に搭載されたり, 研究開発などでも利用されています.身近なとこ ろでは,携帯電話やプリンタ,自動車の制御用コ ンピュータなどに採用された例が報告されていま す.また,人工衛星にも搭載されています. 3

6

RTOS のプログラミング・テクニック①

時間に合わせた処理を 記述する方法

 \odot

第

使用するプログラム 04 Sample Program (asp)

峕

本章では,時間ベースの処理を記述する方法を 解説します. どのような処理になるのか,携帯電 話の時計機能を例に考えてみましょう.

携帯電話には時計が付いていて,最近では目覚 まし時計の代わりに携帯電話の目覚まし機能を 使って朝起きている人も多いでしょう.目覚まし がなかったら,早く目覚めるように習慣づけて, 起きる時間を時計を見て確認しなくてはなりませ ん.でも,目覚ましを使えば毎日正確な時刻に起 きられるわけです.

また,カップラーメンを作るときに,携帯電話 のストップウォッチ機能が役に立ちます.

普通の時計で図るのは面倒な上に, 分単位でし

か表示がないと1分程度ずれてしまうかもしれま せん. そんなときにストップウォッチ機能を使え ばきっかり何分たったかを数えて,特定の時間が 経過したことを通知してくれます.

杉本明加

Δ

6

9

両方に共通して言えることは、時間を人が確認 すると大変だということです(図4.1). それを携 帯電話の時計機能に任せれば、あなたは時計を頻 繁にチェックする作業から解放されます.

組み込みソフトウェアでも同じような状況は頻 繁に想定されます.定期的に実行しなければなら ない処理,また時折起こる特定時間を待つ処理を 行う機能が RTOS から提供されています.

図 4.1 RTOS に任せれば、時間管理から解放される

RTOS プログラミング・テクニック②

タスク間でデータを やり取りする方法

 \odot

第

使用するプログラム 04_SampleProgram(asp)

峕

本章では、タスク間でデータをやり取りする方 法を解説します。みなさんは普段どのような方法 を使って、ご家族、友人や仕事上のコミュニケー ションを取っているでしょうか?(図 5.1)

昔なら手紙や葉書でしたし、その後は固定電話 やFAXが普及しました.現在では携帯電話や E-mailやWebチャット、Skypeなどのビデオ・ チャットといったより便利な手段が普及していま す(表5.1).時と場合によって、これらのさまざ まな方法を使い分けているでしょう.プライベー トでは携帯メールで、急ぎのときや重要な話は電 話で、年末年始には年賀状といった使い分けをす るでしょう. 杉本明加

5

仕事であれば、伝える内容が残って複数人でや り取りができる E-mail を使い、文章では詳細が伝 わりづらいやり取りであれば電話や TV 会議など を用いるなど、工夫を凝らしているかと思います.

これは、それぞれのコミュニケーション方法に は一長一短があり、何を、誰に、いつ、どこから / どこにいる相手へ情報を伝えるかを判断して、 どの手段が有効かを判断してのことです。

RTOS の話に置き換えると、人がタスクで、コ ミュニケーション手段がデータをやり取りする方 法にあたります.ソフトウェアにおけるデータの やり取りにもさまざまな方法があり、それぞれ特 徴を持っています.タスク間でやり取りする情報

図 5.1 適切なコミュニケーション方法を選択する必要がある

RTOS プログラミング・テクニック③

メモリゃ I/Oを管理する方法

第

使用するプログラム 04_Sample Program (asp)

峕

本章ではメモリや I/O を管理する方法を解説 します.人気飲食店で食事をするためにあなたは 行列に並んでいます.食事を楽しみに待ちながら お店の中と店員さんの様子を見てみましょう.

店員さんは慌ただしく仕事をする一方, 食事を 終えそうなお客さんのようすをうかがっているよ うです.すると二人連れのお客さんが立ち上がり, 会計に向かいました.その後ほどなくしてテーブ ルが片付けられ,テーブルが1人用に並び替えら れた後,行列に並んでいた先頭の人とあなたがお 店の中に招き入れられました.

お店で食事できる人数には限りがあり、お店へ 入るお客さんの人数もバラバラで、いつお客さん 杉本明加

が来るかも決まってはいません。そういった状況 で店員さんはよりたくさんの人に早く食事をして もらえるよう,席を管理しています(図 6.1).お 客さん自身が好き勝手にテーブルに着いたら,店 員さんがいる時のようにはいかないでしょう.

組み込みソフトウェアに置き換えると,限られ た資源であるメモリやI/Oはお店の席数です. 当然大事に使わなければなりませんが,アプリ ケーション(お客さん)による管理では,システ ム構成が変わるたびに開発者がメモリやI/Oの 管理をアプリケーションで行わなくてはなりませ ん.RTOS(店員さん)に任せておけば,そんな煩 雑な管理もバッチリ行ってくれます.

図 6.1 店員 (RTOS) さんが、お客さんの数に合わせて席を作ってくれる

6

簡易タイム・レコーダの製作

複数の OS で動作する プログラムを作成する

使用するプログラム 04 SampleProgram(asp)

 \bigcirc

峕

これまでリアルタイム OS (RTOS) の基本的な 使い方について説明してきましたが、本章ではそ の集大成として実際に動くシステムを作成してみ ましょう、今まで扱ってきたプログラムに比べる と多少複雑ですが、順を追って説明していくので 十分理解できるものと思います。

現在では、開発される組み込みシステムが大規

杉山明加

模になり,一人でシステム全体を手がけることが 難しくなってきています.しかし,一つのシステ ムを作り上げることで,組み込みシステム開発の 全般を理解し,個々の技術要素への習熟度も高ま ります.したがって,たとえ小さなシステムで あっても一人で完成させるということは貴重な体 験になるでしょう.

7.1 作成するアプリケーションの概要

本章で作成するアプリケーションは, FeliCa カード・リーダを使用した簡易タイム・レコーダ です. FeliCa カード・リーダは, さまざまな IC カードからデータを読み出すことができます. 有 名なのは, Edy やおサイフケータイです. 今回は、FeliCaの機能のうち、FeliCaチップ に書き込まれた固有の ID 値 (IDm) を読み取る機 能を使った簡単なタイム・レコーダを実現します (図7.1). 実際, IC カードに対応したタイム・レ コーダは数多く開発されており、さらにタイム・

図 7.1 簡易タイム・レコーダの構成 FeliCa カードの情報を読み出し、パソコンに表示させる.

コンパイラやアセンブラ, リンカの動きを理解する

ターゲット・ハードウェアで 実行できるコードを生成する方法

中村 建真

Δ

6

8

作成したプログラムを,目的のハードウェア上 で動作させるには,ソース・コードを CPU が実 行可能なコード(機械語)に変換する必要があり ます.さらに組み込み開発では,開発するシステ ムごとに CPU やシステム構成がそれぞれ異なる ため,その環境に合わせた実行コードを生成する ことが求められます.

音

それぞれのシステムに合わせて実行コードを生

成するには、ハードウェアの知識に加えて、開発 ツールの知識が強く求められます。例えば、「リ セット後の実行開始番地は 0x0000 番地である」 というのはハードウェアの知識になりますが、 「0x0000 番地にプログラムを配置する」という のはツールに関する知識になります。

本章では,開発に必要なツールであるコンパイ ラやアセンブラ,リンカについて解説します.

8.1 CPU が実行できるコードにコンパイルする

CやC++などの高級言語で記述されたソース・コードを機械語に変換して, CPU上で実行 可能なコードを生成する処理をコンパイルといい ます.そして,コンパイルするツールをコンパイ ラといいます.

● x86 マシン用の実行ファイルを生成

まず,パソコン上の CPU でプログラムを動作さ せてみましょう. **リスト 8.1** は,C 言語の入門とし てよく見かける Hello プログラムです. これは組 み込み用のプログラムではなく, Windows や Linux といったパソコン上で,「Hello, CQ」をテ キスト出力する (ディスプレイに表示させる) プ ログラムです. このプログラムを, 今回の開発環 境である Ubuntu 上で動作させてみましょう. Ubuntu が動作するのは x86 マシンなので, x86 用のコンパイラを使います.

コンパイラには、GCC^{注1}を使用します. これ

```
#include <stdio.h>
int main()
{
    printf("Hello, CQ¥n");
    return 0;
}
```

デバッガのシミュレーション機能を 使ってみよう

GDB を使った プログラムのデバッグ

 \odot

使用するプログラム 05_Sample Program (jsp)

作成するプログラムをデバッグするには,大き く分けて二つの方法があります.一つは,printf 文などを適切に配置して内部状態を探りながらデ バッグを行う方法です.もう一つは,デバッガを 使ってブレークポイントやステップ実行,変数の 監視を絡ませながら行う方法です.

デバッガを使った方が、簡単で効率的です.特 に、組み込み機器のようにハードウェアに近いと ころで動作するソフトウェアを開発する際は、デ バッガを使わずにプログラムを作成することは難 しいでしょう.そこで本章では、コマンド・ライ 中村 建真

ン・ デバッガである GDB^{注1}を紹介します. GDB は単独でも使えるだけでなく, Eclipse と協 調させることで GUI (Graphical User Interface) デバッガとしても使用できます.

本章では, 第8章で使用した空の main 関数を 持つアプリケーション・プログラムを例題として GDB の使い方を説明します. 使用するプログラ ムは, 本書付属の DVD-ROM の /05_Sample Program(jsp)/00_empty の中に収録されてい ます.

9.1 GDB のシミュレーション機能を使う

まず、00_emptyをシミュレータで動かしてみ ましょう、00_emptyは、空のmain()をARMマ イコン基板に実装するように作成したプロジェク トです、シミュレータには、GDBのシミュレー ション機能を使います、そのため、使用するシ ミュレータが LPC2388 に対応しているかどうか 心配です、しかし、このプログラムでは、ARM コアとメモリの配置以外にハードウェアに依存す る部分がないため、シミュレータが対応していて もいなくても関係ありません.

GDBのシミュレーション機能には、ステップ 実行をはじめとするデバッグ用の機能が付いてい るため、プログラムの動作を観察できます.ちな みに、第8章で使用したシミュレーション・コマ ンドarm-none-eabi-runは実行のみで、ス テップ実行やブレークポイントの機能はありませ ん.そのため、今回のようなメッセージを出力し ないプログラムを実行させても意味がありません. 6

9

注1:デバッグはプログラムの不具合を探し出し、それを修正する作業のこと.また、デバッガはデバッグを支援するツー ルまたはソフトウェアのこと.ブレークポイントは、実行中のプログラムを中断させること、あるいは中断させる個 所を指す.ステップ実行は、プログラムを1行ずつ確認しながら実行させること.GDB (GNU Debugger)は、GCC と同様に Free Software Foundation (FSF) が配布しているフリー・ソフトウェア.

RTOS を移植するための準備作業①

ARM マイコン LPC2388の 機能をチェックする

 \odot

第

使用するプログラム 05_Sample Program (jsp)

TOPPERS/JSP を各種プロセッサに移植する には、TOPEPRS/JSP 自身とプロセッサのアー キテクチャ、そして開発ツールの知識が必要です. いずれも深い知識が必要になるため、新しいプロ セッサに一から OS を移植しようとするとかなり 大変です.

幸いなことに、ARM マイコン基板に搭載され ている LPC2388 の CPU コアである ARM7TDMI の依存部は、TOPPERS/JSP の公式コードとし て配布されています。したがって、LPC2388 へ の移植に関していえば CPU 依存部を移植する必 要はなく、システム依存部だけを移植すればよい 中村 建真

ことになります.システム依存部とは、タイマと シリアル・ポート、割り込みコントローラ、PLL などの機能や、スタートアップ時に行う処理のこ とです.

本章では、LPC2388のシステム依存部を確認 する方法を説明します.LPC2388の各機能につい てはユーザーズ・マニュアル(UM10211 LPC23xx User's Manual)で確認できますが、今回はマニュ アルに載っている各機能を実機でテストする方法 を解説します.使用するプログラムは、本書付属 のDVD-ROMの/05_Sample Program (jsp) の中に収録されています.

10.1 ARM マイコン「LPC2388」の構造

LPC2388の構造は、図 10.1 に示すように ARM 7TDMI-S コア^{注1}を中心として、複数のバスに 多数のペリフェラル(周辺機能)が配置されてい ます. バスの本数が複数あるのは、Ethernet MAC や USB OTG のようなバス・バンド幅が必要 なペリフェラルを内蔵しているためです.

これらはバス・ブリッジで接続されており, 互 いのトラフィックを妨げず, また CPU と自由にや りとりができます. ブリッジはプログラマからは 見えず, すべてのペリフェラルが一つのアドレス 空間にマップされているため, プログラミング・ モデルは単純です.

ペリフェラル・レジスタは、すべてメモリ・ア ドレス空間にマッピングされています.つまり、 C 言語からポインタを使ってペリフェラル・レジ スタにアクセスできます.

例えば、インクルード・ファイルで以下の宣言 をしておけば、レジスタへ変数のようにアクセス 6

注1: ARM7TDMI-S は、ARM7コアに、T(16ビット固定長の Thumb 命令を採用)、D(オンチップ Debug 機能)、M(ハードウェアによる乗算機能)、I (組み込み ICE 機能) という四つの機能が追加された CPU を意味する.また、-S はソフト・マクロにより論理合成されたデバイスであることを示す.

ステップアップで移植の手順を理解する

ARM マイコン LPC2388 に RTOS を移植してみよう

 \odot

第

使用するプログラム 05_SampleProgram(jsp)

本章では、LPC2388 に TOPPERS/JSP のシス テム依存部を移植する方法を解説します. CPU 依存部については移植済みコードがすでに存在す るので、システム依存部の移植は比較的容易な移 植作業といえます.

しかし、もともと RTOS の移植は複雑な作業 である上、TOPPERS プロジェクトから移植作業 のためのスタブやテスト・ドライバなどが提供さ れていません。

そこで,移植作業を少しでも楽にするために, 第10章で紹介した試験プログラムやすでに存在 中村 建真

するモジュールなどを活用して、システム依存部 の移植を進めることにします.

ここでは、LPC2388 用 TOPPERS/JSP の SRAM 上で動作する版とフラッシュ ROM 上で動作する 版を作ります.いずれも本書の解説用であり、実 アプリケーションで使用することはお勧めしませ んが、学習するには十分です.

TOPPERS/JSP のソース・ ツリーのルートは 通常は"jsp"にしますが、すでに存在するリリー ス版との混同を避けるために、ここでは"jsp_ study"とします.

11.1 移植に必要な変更点を確認する

今回の移植に際して,各段階における状況を示 すスナップ・ショットは、本書に付属するDVD-ROMの中にCVSレポジトリとして収録してあ ります.各節のタイトルに対応するスナップ・ ショットのCVSタグ名を表記してあるので、 CVSクライアントを使って変更点を追いかけて ください.それぞれの版の差分を取れば変更点が わかります.

CVSは、UNIX で使われているバージョン管 理システムで、オンラインのサーバにソース・ コードを格納し,作業の履歴を保管するものです. 今回は,移植の過程を CVS に記録しながらサン プル・コードを作りました.

サンプル・コードの各スナップ・ショットは, シェルから CVS コマンドで, あるいは Eclipse の CVS 機能でも取得できます.

Eclipse の CVS 機能では, 任意のタグの版の ソース・ツリーを簡単に取得できるほか, ほかの タグとのソース比較もできるので活用されること をお勧めします (図 11.1).

簡単なアプリケーションを動かしてみよう

RTOS で LED を 光らせる 初めの一歩

使用するプログラム 05 Sample Program (jsp)

第

 \bigcirc

中村 建真

12.1 簡単なプログラムをビルドする

● TOPPERS/JSP のサンプル・プログラム TOPPERS/JSP には、あらかじめ単純なサン プル・プログラム Samplel が用意されています. これは、キャラクタ端末を通してユーザと対話す るプログラムです.ユーザは、このアプリケーショ ンにコマンドを送ることにより、TOPPERS/JSP の機能を体験することができます.自分自身でア プリケーションを開発する手始めとして、このプ ログラムをビルドして動かしてみましょう.

Samplel アプリケーションをビルドするために, アプリケーションのディレクトリを用意します. 図 12.1 に, ディレクトリ構成を示します. 親ディ レクトリが workspace になっていますが, この ディレクトリは好きな名前でかまいません. ここに 移植を行った jsp_study を置きます. そして, jsp_study と並んで新しく sample1 ディレクト リを作ります. studyの中に降りて,コンフィギュレータをビル ドします.ビルドが成功したら,今度は sample1 の中へ移動して,サンプル・プログラム Sample1 を作ります.

この一連のコマンドの流れを図 12.2 に示しま す. このコマンドの中で呼び出されている ../ jsp_study/configure は, コンフィギュレー タを呼び出すスクリプトです. パラメータの -C と -S は, それぞれ CPU 依存部とシステム依存 部を指定しています. このスクリプトの使い方の 詳しい説明は, jsp_study/doc/user.txtを 参照してください.

注意深く見ればわかることですが, configure スクリプトのパラメータはターゲットとなるシス テムを指定しているだけで, アプリケーションの ソース・コードを一切指定していません. この場 合, configure スクリプトは TOPPERS/JSP の ソース・ツリーに含まれている Sample1 アプリ

次に,	TOPPERS/JSP のソース・	ツリー	jsp
-----	-------------------	-----	-----

workspace	
jsp_study	
sample1	

図 12.1 アプリケーション Sample1 のディレクトリ構成

このPDFは、CQ出版社発売の「インターフェースZERO No.03」の一部見本です.

内容・購入方法などにつきましては以下のホームページをご覧下さい。

- 内容 http://shop.cqpub.co.jp/hanbai/books/MIF/MIFZ201209.htm
- 購入方法 http://www.cqpub.co.jp/order.htm

定価2,520円 本体2,400円